
INTRODUCTION

TWO YEARS might seem like an eternity when one considers
how rapidly a protein can fold. But 2 years can pass quickly,

and since the last Antioxidants & Redox Signaling forum on
the topic was commissioned, the oxidative protein folding
community has spent that time very fruitfully. In this brief
overview, I will consider the progress that has been made in
the field since the articles and reviews were accepted for the
August 2003 issue.

DISULFIDE BOND FORMATION IN 
THE BACTERIAL PERIPLASM

Disulfide bond formation in the periplasm is catalyzed by
the oxidant DsbA, which is maintained in the oxidized state
by DsbB. Disulfide bond rearrangement is catalyzed by the
isomerase DsbC, which is maintained in a reduced state by
DsbD (31). Subsequent work by the Beckwith group has used
genetics coupled with alkylation and proteolytic studies to read-
dress the topology of DsbD. Two essential cysteine residues
(C163 and C285), thought to be located within a membrane
spanning region, have now been shown to form a disulfide bond
and may be available for disulfide exchange with cytosolic
thioredoxins (18). How redox information is conducted from
the DsbD cytosolic cysteine residues to its periplasmic cysteine
residues is not entirely clear. However, the solution of a 2.5-Å
DsbD crystal structure has shown that an N-terminal peri-
plasmic cysteine (C109 in the DsbD Ig-like domain) can form
a transient intramolecular disulfide with a C-terminal peri-
plasmic cysteine (C146 in the thioredoxin-like domain) (34).
As with many redox enzymes, large spatial reorientations seem
to occur when the binding partner changes: in this case, when
the DsbD Ig domain binds alternatively to DsbC or to the
DsbD thioredoxin domain.

Evidence presented by Blank et al. (5) suggested that in V.
cholerae, amino acids H94 and P149 influence the catalytic
activity of this organism’s DsbA protein. Remarkably, mutat-
ing P151 in the E. coli DsbA enzyme has allowed covalent in-
termediates in the oxidation process to be isolated. At least 13
DsbA substrates, five of which were not previously known,
have been trapped and identified by mass spectrometry using
this approach (17). Another trapping approach using osmotic
shock has enabled in vivo substrates of both DsbA and DsbC
to be identified (14). Engineering the cytosolic (reductive) thiore-
doxin pathway to support oxidative disulfide bond formation
by forced evolution has been achieved (28), and the control of
DsbA/DsbB under anaerobic conditions is also yielding to
experimental analysis (36).

REDOX SWITCHES

Linke and Jakob drew our attention to the reversibility of
disulfide bond formation, and how this is regulated in com-
partments where the redox potential was traditionally thought
to disfavor the formation of disulfide bonds (26). Leichert and
Jakob have now introduced a methodology that permits large-
scale analysis of protein thiol modifications in vivo (24). By
coupling trapping techniques and two-dimensional polyacryl-
amide gel electrophoresis to genetic studies, these authors have
shown that a significant number of proteins obtain modified
thiols after oxidative stress. This approach should facilitate the
comprehensive identification of targets of cytoplasmic redox
regulation under various growth and stress conditions.

The bacterial transcription factor OxyR is regulated by per-
oxide-induced redox switching (26). Detailed kinetic and mass
spectrometric studies of this protein have demonstrated that
specific S-S bond formation is required for this process, and
that the rapid kinetics of the oxidation–reduction cycle relies
upon conformational strain (23). In addition to reactive oxy-
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gen species, it appears that the response to reactive nitrogen
species will also involve sensing by redox-active cysteine
residues in transcription factors (30). Other redox sensors are
emerging. The bacterial ArcB protein, for example, is a kinase
inhibited by a quinone-driven switch (27).

GENOMICS AND THE PROTEIN
DISULFIDE ISOMERASE (PDI) FAMILY

Fomenko and Gladyshev outlined the power of genomics
as a tool for investigating disulfide bond formation in the en-
doplasmic reticulum (ER), periplasm, and other compartments
(10). To emphasize the richness of this approach, the Glady-
shev group has used comparative genomics to identify and
characterize the elusive phosphoseryl-tRNA[Ser]Sec kinase
involved in selenoprotein biosynthesis (6), and to map the eu-
karyotic (22) and prokaryotic selenoproteomes (21). Genomics
has proved useful for identifying potential new folding cata-
lysts and chaperones, too. PDI is the prototypical ER disul-
fide bond catalyst (19), and since 2002, a number of novel eu-
karyotic PDI family members have been identified, including
ERp18 (2), the endothelial EndoPDI (35), and the testis-specific
PDILT (40). The publication of more tightly defined domain
boundaries for the PDI family should help in the functional
analysis of the new additions to this protein family (1). Excit-
ing recent work also suggests that PDI family members are
involved in morphological processes. The zebra fish P5 PDI
homologue is required for appropriate bilateral asymmetrical
gene expression (15), whereas in nematodes, the pdi-3 gene
(an ERp57 homologue) is involved in maintaining body mor-
phology through its role in extracellular matrix assembly (9).
Biochemical studies in concert with animal models should con-
tinue to break fresh ground in this area.

The PDI homologue ERp57 interacts with tapasin, a mole-
cule involved in loading major histocompatibility complex
(MHC) class I complexes with antigenic peptides for antigen
presentation (3). The biochemistry of MHC class I complex
formation in the ER requires oxidative protein folding, and is
the focus of much attention because of its relevance to the im-
mune response. The Ig domain of tapasin and the cysteine
residues within it are important for its intermolecular interac-
tions (38). Although tapasin acts as a bridge between some
MHC class I molecules and the antigen transporter, TAP, its
precise role is still being defined. There is some debate about
whether tapasin functions as a peptide editor or facilitator
(25, 43), and tapasin does appear to improve antigen presen-
tation of low-affinity peptides by increasing their half-lives
(16). The exact function of ERp57 within the MHC class I load-
ing complex still requires more scrutiny (41).

ER OXIDOREDUCTASES

Ero1p is the prototypical ER oxidoreductase, and Ero1p is
essential for disulfide bond formation in S. cerevisiae (37).
We reported the sequencing and primary characterization of
two Ero1p homologues in plants, AERO1 and AERO2, whose
gene expression is likely to be differentially regulated (8). Sup-
port for differential regulation of ER oxidoreductases has come
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from work on rats and in cell lines, showing that mammalian
Ero1� expression is regulated by oxygen tension (11). This is
in contrast to mammalian Ero1�, which is regulated by the
unfolded protein response (33). S. pombe also has two Ero pro-
teins, SpEro1ap and SpEro1bp, with SpEro1bp being the func-
tional equivalent of Ero1p (20). Why is the synthesis of two
Ero proteins required in S. pombe? The answer is not yet known.

Undoubtedly, the most significant advance in this area has
been the publication of the 2.2-Å and 2.8-Å crystal structures
of the Ero1p core protein (12). This work gives a clear im-
pression of how intramolecular electron transfer is facilitated
in a protein that is constrained by two long-range disulfide
bridges (between C90-C349 and C295-C150). The solution of
two crystal structures, in an “in” and an “out” conformation,
reveals how the crucial active-site cysteine residues (C100-C105
and C352-C355) can contact each other and transfer elec-
trons, presumably upon binding and release of PDI. The unique
single-domain and mainly �-helical structure also reveals the
architecture of a novel FAD binding motif. Although the struc-
ture is elegant, we still do not know precisely how PDI binds,
how the nonconserved Ero1p C-terminal tail fits in, or how
electrons are handed on to the final electron acceptor, oxy-
gen. Answers to these questions will surely emerge in the next
few years as the molecular understanding of oxidation in the
ER deepens.

ANTIOXIDANTS, REDOX STATE, 
AND PROTEIN FOLDING

There has been considerable interest in how the ER com-
municates with the cytosol during times of stress. Oxidative
stress induced by peroxide can disrupt ER protein folding (39),
and the redox state of the cystosol, in particular glutathione
load, can influence the rate of disulfide bond formation in the
ER by controlling disulfide isomerization (rather than oxida-
tion directly) (7, 29). Eukaryotic cells mount an unfolded pro-
tein response (UPR) in situations where more protein folding
capacity is required in the ER. It has been shown recently in
yeast that sustained UPR results in the accumulation of reac-
tive oxygen species and eventually apoptotic cell death, and
that ER-associated degradation can alleviate this problem (13).
Microarray analysis of HeLa cells placed under hypoxic stress
nicely reveals how the ER stress response and cellular hypoxia
may be integrated by activation of the transcription factor ATF4
in tandem with the phosphorylation of the initiation factor eIF2�
by the ER membrane-associated kinase PERK (4). Although
there is along way to go before we fully understand how phys-
iological cytosolic stress and ER stress are coordinated, con-
siderable progress in this area is expected in the next few years.
Big leaps are already being made with respect to the role of
ER stress in insulin-deficient diabetes (32, 42). No doubt that
there will be further significant advances in the next two years.

ABBREVIATIONS

ER, endoplasmic reticulum; MHC, major histocompatibil-
ity complex; PDI, protein disulfide isomerase; UPR, unfolded
protein response.
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